Где используют этилен. Строение молекулы этилена

21.09.2019
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Как вы уже знаете, при дегидрировании этана образуется этилен - родоначальник гомологического ряда алкенов.

Потеря двух атомов водорода приводит к образованию между атомами углерода не одинарной, а двойной связи:

Так как валентности атомов углерода в этилене и его гомологах не до предела насыщены атомами водорода, то такие соединения называют непредельными.

Если сравнить общие формулы алканов и алкенов, нетрудно заметить, что их состав отличается на два атома водорода:

Принадлежность углеводорода к классу алкенов отражают родовым суффиксом -ей в его названии. Этилен - родоначальник гомологического ряда алкенов (табл. 3).

Таблица 3 Гомологический ряд этилена

Строение молекулы этилена представлено на рисунке 14. Нетрудно заметить, что молекула этилена имеет плоскостное строение. Аналогично и у всех алкенов по месту расположения двойной связи фрагмент молекулы будет иметь плоскостное строение.

Рис. 14.
Модели молекулы этилена:
1 - масштабная; 2 - шаростержневая

Начиная с третьего члена гомологического ряда алкенов, содержащего в молекуле четыре атома углерода, появляется изомерия углеродного скелета и изомерия положения кратной связи:

Для алкенов характерна межклассовая изомерия с углеводородами другого класса, имеющего такую же общую формулу C n H 2n , - циклоалканами. Особенностью химического строения циклоалканов является наличие замкнутой цепочки атомов углерода - цикла, например:

Особенности построения названий алкенов состоят в том, что главная цепь атомов углерода должна обязательно включать двойную С=С-связь, и ее нумерацию проводят с того конца главной цепи, к которому эта связь ближе. В названии углеводорода, оканчивающегося на -ен, цифрой указывают номер того атома углерода, от которого начинается двойная углерод-углеродная связь. Остальные правила формирования названий алкенов остаются такими же, как и для алканов. Например:

В промышленности этилен получают крекингом (расщеплением) продуктов переработки нефти, например керосина.

В лабораторных условиях этилен получают дегидратацией этилового спирта:

Этилен - это бесцветный газ без запаха, почти нерастворим в воде. Он обладает способностью ускорять созревание плодов и овощей, что используют в овощехранилищах, куда закладывают недозрелую плодоовощную продукцию.

Рассмотрим химические свойства алкенов на примере этилена.

Наличие в молекулах алкенов двойной С=С-связи обусловливает их химические свойства.

Для алкенов, как для непредельных углеводородов, характерны реакции присоединениях 1) водорода (гидрирование), 2) воды (гидратация), 3) галогенов (гало-генирование) и др. При этом одна из двух связей между атомами углерода разрывается, и оба атома присоединяют атомы или группу атомов реагента. В результате алкен превращается в алкан или его производное:

Последняя реакция применяется для обнаружения соединений с кратной (двойной или тройной) углерод-углеродной связью, т. е. является качественной на кратную связь. При этом происходит обесцвечивание бромной воды (раствора брома в воде) (рис. 15). Аналогичная реакция с хлором имеет практическое значение, поскольку приводит к образованию важного продукта - 1,2-дихлорэтана, используемого в качестве растворителя и для получения пластмасс.

Рис. 15.
Обесцвечивание бромной воды этиленом (качественная реакция на кратную связь)

Для гомологов этилена, например пропилена, реакция гидратации протекает в соответствии с правилом В. В. Марковникова.

При присоединении полярных молекул, например галогеноводородов или воды, к алкену водород преимущественно присоединяется к атому углерода при двойной связи, с которым соединено большее число атомов водорода:

Аналогично гидратации протекает и реакция присоединения галогеноводородов к алкенам, например:

Сущность любой химической реакции заключается в образовании новых молекул из тех же самых атомов, из которых образованы исходные вещества. В ходе любой реакции одни связи разрываются, другие - образуются. Разрыв ковалентной связи можно рассматривать как процесс, обратный ее образованию. Следовательно, при этом возможны два направления разрыва.

Гемолитический разрыв приводит к тому, что оба атома, ранее связанные ковалентной связью, получают по одному электрону, превращаясь в частицы с неспаренным электроном - свободные радикалы.

Подобный тип разрыва химической связи и, соответственно, радикальный механизм реакции наблюдается при уже рассмотренном процессе галогенирования метана.

Гетеролитический разрыв осуществляется таким образом, что один из атомов получает оба электрона, служившие ранее общей электронной парой. Такой тип разрыва связи приводит к образованию заряженных частиц - ионов:

Подобный тип разрыва химической связи и, соответственно, ионный механизм реакции наблюдается в процессе присоединения галогеноводорода к алкенам.

Как известно, химическая связь в молекуле хлорово-дорода является полярной. В условиях реакции молекула НС1 распадается на ионы Н + и С1 - :

НСl → Н + + Сl - .

Эти ионы и присоединяются к атомам углерода за счет гетеролитического разрыва двойной связи в молекуле алкена.

Особым случаем реакций присоединения является реакция полимеризации.

Полимеризацию этилена можно отразить с помощью следующей схемы:

или с помощью следующего уравнения:

Полимеризацию проводят в присутствии инициаторов, например перекисных соединений, которые являются источниками свободных радикалов. Перекис-ными соединениями называют вещества, молекулы которых включают группу -О-О-. Простейшим перекисным соединением является пероксид водорода Н-О-О-Н.

Вещество, вступающее в реакцию полимеризации, называют мономером , продукт такой реакции - полимером , формулу в скобках в уравнении такой реакции - структурным звеном , а индекс n - степенью полимеризации , которая показывает, сколько структурных звеньев образуют молекулу полимера.

В настоящее время нашу жизнь невозможно представить без полимеров. Изделия из них все в большей степени вытесняют из нашего быта изделия, изготовленные из природных материалов, поскольку полимеры обладают самыми разнообразными свойствами, сравнительно дешевы, легко обрабатываются.

Полиэтилен представляет собой важнейшую пластмассу, которая находит широкое применение в народном хозяйстве (рис. 16).

Рис. 16.
Применение полиэтилена:
1 - медицинское оборудование; 2 - предметы домашнего обихода; 3 - пленка для парников; 4 - трубы и шланги; 5 - клейкая лента; 6 - упаковочная пленка; 7 - пакеты; 8 - детали

В лабораторных условиях с помощью реакции деполимеризации технического полиэтилена (она является обратной процессу полимеризации), например, из полиэтиленовых гранул, можно получить этилен (рис. 17):

Рис. 17.
Получение этилена деполимеризацией полиэтилена

На кратную связь, кроме реакции обесцвечивания бромной воды, существует еще одна качественная реакция - реакция обесцвечивания раствора перманганата калия КМп04 (рис. 18), уравнение которой


Рис. 18. Обесцвечивание раствора перманганата калия этиленом (качественная реакция на кратную связь)

Этилен - важнейший продукт химической промышленности, так как используется для получения других ценных веществ и материалов (рис. 19).

Рис. 19.
Применение этилена:
1 - в овощехранилищах для ускорения созревания плодов; 2-6 - производство органических соединений (полиэтилена 2, растворителей 3, уксусной кислоты 4, спиртов 5, 6)

Новые слова и понятия

  1. Алкены.
  2. Изомерия алкенов: углеродного скелета и положения кратной связи.
  3. Правила составления названий алкенов по номенклатуре ИЮПАК.
  4. Реакция дегидратации.
  5. Химические свойства этилена: взаимодействие с водородом, водой, галогенами, реакция полимеризации.
  6. Мономер, полимер, структурное звено, степень полимеризации.
  7. Качественные реакции на кратную связь.

Вопросы и задания

  1. Какие вещества называют алкенами?
  2. Дайте характеристику гомологического ряда алкенов согласно плану: а) общая формула; б) родовой суффикс; в) виды изомерии; г) номенклатура; д) характерные реакции.
  3. Как получают этилен: а) в промышленности; б) в лаборатории?
  4. По аналогии с этиленом запишите уравнения реакций получения пропена: а) промышленного (из пропана); б) лабораторного (из пропанола-1 СН 3 -СН 2 -СН 2 -ОН).
  5. Найдите химические термины-антонимы в названиях реакций, характерующих химические свойства и способы получения этилена. Дайте их определения.
  6. Какими способами можно отличить этилен от этана?
  7. Найдите массовую долю углерода в молекулах: а) пропана; б) пропилена (пропена).
  8. Найдите объем этилена (н. у.), полученного реакцией дегидратации 230 мл 95%-го этилового спирта (плотность 0,8 г/мл).
  9. Этилен горит светящим пламенем в отличие от бесцветного пламени этана. Почему? Ответ подтвердите расчетом массовой доли углерода в молекулах этих веществ. Составьте уравнение реакции горения этилена.



ПРОМЫШЛЕННЫЙ СПОСОБ ПОЛУЧЕНИЯ КРЕКИНГ АЛКАНОВ АЛКАН АЛКАН + АЛКЕН С БОЛЕЕ ДЛИННОЙ С МЕНЕЕ ДЛИНОЙ С БОЛЕЕ ДЛИННОЙ С МЕНЕЕ ДЛИНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ ЦЕПЬЮ ЦЕПЬЮ ЦЕПЬЮ ЦЕПЬЮ ПРИМЕР: t= C t= C С 10 Н 22 C 5 H 12 + C 5 H 10 С 10 Н 22 C 5 H 12 + C 5 H 10 декан пентан пентен декан пентан пентен








ЛАБОРАТОРНЫЙ СПОСОБ ПОЛУЧЕНИЯ ДЕГИДРОГАЛОГЕНИРОВАНИЕ УДАЛИТЬ ВОДОРОД ГАЛОГЕН ДЕЙСТВИЕ УДАЛИТЬ ВОДОРОД ГАЛОГЕН ДЕЙСТВИЕПРИМЕР: спиртовой спиртовой H H раствор H H раствор Н-С–С-Н+KOHН 2 С=СН 2 +KCl+H 2 O Н Cl этен Н Cl этен хлорэтан (этилен) хлорэтан (этилен)










РЕАКЦИЯ ПОЛИМЕРИЗАЦИИ Это процесс соединения одинаковых молекул в более крупные. ПРИМЕР: n CH 2 =CH 2 (-CH 2 -CH 2 -)n этилен полиэтилен (мономер) (полимер) n – степень полимеризации, показывает число молекул, вступивших в реакцию -CH 2 -CH 2 - структурное звено


Применение этилена СвойствоПрименениеПример 1. ПолимеризацияПроизводство полиэтилена, пластмасс 2. Галогенирование Получение растворителей 3. Гидрогалогени- рование Для: местная анестезия, получения растворите- лей, в с/х для обеззараживания зернохранилищ


СвойствоПрименениеПример 4. Гидратация Получение этилового спирта, используемого как растворитель, анти-септик в медицине, в производстве синтетического каучука 5. Окисление раствором KMnO 4 Получение антифризов, тормозных жидкостей, в производстве пластмасс 6. Особое свойство этилена: Этилен ускоряет созревание плодов

Техническое применение этилена и масштаб его производства

САМАРА 2013

Контрольная работа по дисциплине

Список использованных источников

1. Налоговый кодекс Российской Федерации (часть вторая) от 5 августа 2000 года N 117-ФЗ (ред. от 03.11.2010).

2. Об утверждении унифицированных форм первичной учетной документации по учету труда и его оплаты: Постановление Госкомстата РФ от 05.01.2004 N 1.

3. Вещунова Н.Л., Фомина Л.Ф. Самоучитель по бухгалтерскому и налоговому учету – СПб.: Проспект, 2010. – 560 с.

4. Радченко М.Г. 1С: Предприятие 8.1. Практическое пособие разработчика – СПб.: Питер, 2007. – 512 с.

5. 1С: Предприятие 8.1.Конфигурирование и администрирование. – М.: Фирма «1С», 2008. – 430 с.

«Теория химических процессов органического синтеза»

Вариант №10

Выполнил студент

3 курса, 2 группы …………………………..

_______________________

(подпись)

Руководитель

профессор Нестерова Т.Н.

_______________________

(подпись)

Работа защищена

«___»____________2013г.

Оценка________________

Задание на контрольную работу

«Теоретический анализ процесса получения этилена»

1. Выполнить обзор литературы по областям технического применения этилена и масштабам его производства.

2. Выполнить обзор литературы по методам получения этилена, способам его выделения из контактного газа и перспективам развития технологий.

3. Выполнить полный теоретический анализ избранного процесса получения этилена:

§ Стехиометрия и материальные расчеты.

§ Термохимический анализ для индивидуального превращения и для процесса в целом.

§ Качественный и количественный термодинамический анализ для индивидуального превращения и для процесса в целом.

§ Качественный и количественный кинетический анализ для индивидуального превращения и для процесса в целом.


1. Обзор литературы …………………………………………....3

1.1. Техническое применение этилена и масштабы его производства..…………...........................................................3

2. Методы получения этилена, способы выделения его из реакционных масс и перспективы развития технологий…………………………...................5

3. Полный теоретический анализ процесса получения этилена пиролизом пропана… ………………………………………………………………......16

3.1. Стехиометрия и материальные расчеты..……………...........16

3.2. Термохимический анализ для индивидуального превращения и для процесса в целом………………………………………16



3.3. Полный термодинамический анализ получения этилена.…23

3.4. Полный кинетический анализ процесса…...………..………32

Список литературы………….....………………………………………………38


Этиле́н (по ИЮПАК: этен ) - органическое химическое соединение, описываемое формулой С 2 H 4 . Является простейшим алкеном (олефином ). В природе этилен практически не встречается.При нормальных условиях - бесцветный горючий газ со слабым запахом . Его температура кипения -103,8 ˚С, а температура замерзания -169,5˚С.На воздухе он горит слегка светящимся пламенем . Частично растворим в воде (25,6 мл в 100 мл воды при 0°C), этаноле (359 мл в тех же условиях). Хорошо растворяется в диэтиловом эфире и углеводородах. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам .

Этилен играет чрезвычайно важную роль в промышленности, а также является фитогормоном.

Этилен-весьма важное сырье для получения ряда синтетических продуктов, особенно этилового спирта, этилен оксида (окиси этилена) этиленгликоля (антифриз) и др. Частично используется в автогенной сварке вместо ацетилена .

В Италии в 1957г было получено 100 тыс. т этилена. Производство этилена в Германии до ВОВ базировалось на пищевом сырье и продуктах переработки угля. В Германии в 1943 г выработано около 90 тыс. т этилена. В 1957 г в ФРГ было получено 100 тыс. т этилена. При этом намечалась тенденция перехода на нефтяное сырье. Производство этилена в Англии, составившее в 1957 г. Около 250 тыс. т, базируется на переработки нефтяного сырья. Во Франции в 1957 г. Было получено 32 тыс. т этилена; исходным сырьем являются коксовые газы и тяжелы продукты приработки нефти. В Японии в 1957 г. было выработано из нефтяного сырья около 40 тыс. т этилена .

Общее мировое производство этилена в 2005 году составило 107 миллионов тонн и продолжает расти на 4–6% в год. Источником промышленного получения этилена является пиролиз различного углеводородного сырья, например, этана, пропана, бутана, содержащихся в попутных газах нефтедобычи; из жидких углеводородов - низкооктановые фракции прямой перегонки нефти. А так же общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2-3 % в год .

Таблица 1. Крупнейшие российские компании - производители этилена и пропилена .

В промышленности тяжелого органического синтеза получили наибольшее распространение следующие процессы химической переработки этилена: полимеризация, окисление, оксосинтез, хлорирование, нитрование, гидратация, теломеризация и алкилирование .

Этилен впервые был получен немецким химиком Иоганном Бехером в 1680 году при действии купоросного масла на винный спирт. Вначале его отождествляли с "горючим воздухом", т.е. с водородом. Позднее, в 1795 году этилен подобным же образом получили голландские химики Дейман, Потс-ван-Труствик, Бонд и Лауеренбург и описали под названием "маслородного газа", так как обнаружили способность этилена присоединять хлор с образованием маслянистой жидкости - хлористого этилена ("масло голландских химиков").

В промышленности для получения этилена применяются разнообразные процессы: пиролиз легких и тяжелых парафиновых и нафтеновых углеводородов, гидрирование ацетилена, дегидратация этилового спирта. Кроме того, этилен получают в качестве побочного продукта при термической переработки твердого топлива, термическом и каталитического крекинга нефти и др.

2.1 Пиролиз предельных углеводородов

Основным промышленным методом получения этилена является высокотемпературное термическое расщепление (пиролиз) предельных углеводородов

В зависимости от метода подвода тепла различают следующие процессы: а) пиролиз в трубчатых печах; б) гомогенный пиролиз; в) автотермический пиролиз; г) с применим твердого теплоносителя.

С 2 H 6 ↔C 2 H 4 +H 2 (III.1)

C 3 H 8 ↔C 2 H 4 +CH 4 (III.2б)

C 4 H 10 ↔2C 2 H 4 +H 2 (III.3б)

С 4 H 10 ↔C 2 H 4 +C 2 H 6 (III.3г)

Принципиальные схемы и режимы различных процессов пиролиза приведены в таблице .

2.2 Каталитическое гидрирование ацетилена в этилен

Был разработан в промышленности процесс получения этилена гидрированием ацетилена.

С 2 H 2 +H 2 ↔C 2 H 4 +Qп

Оптимальная температура процесса 180-320° в зависимости от активности катализатора.

Принципиальная схема установки изображена на рис. 1

Ацетилен, полученный из карбида кальция (чистота 98-99%), сжимается в компрессоре 1 до 1,5-2 атм, охлаждается в холодильнике 2 и очищается твердым адсорбентом (алюмогелем) в адсорбере 3 от паров масла, так как последнее является ядом для катализатора. Водород, полученный из установки газоразделения (чистота 96-98%), сжимается в компрессоре 4, охлаждается в холодильнике 5, осушается и очищается от паров масла в адсорбере 6. Предварительный подогрев водорода и ацетилена осуществляется за счет тепла реакций либо в реакторе 7,либо в выносных теплообменниках. Оптимальная температура в реакторе поддерживается автоматически непрерывной подачей охлаждающей воды в трубчатый теплообменник реактора.

Процесс гидрирования ведут при значительных избытках водорода. Гидрирование ацетилена осуществляется практически полностью. В качестве катализатора используют палладий, нанесенный на силикагель. Содержание палладия в катализаторе не превышает

0,01% вес. Продолжительность непрерывной работы катализатора около одного года .

2.3 Дегидратация этилового спирта

Для получения относительно небольших количеств этилена (до 3000-5000 т/год) можно применять способ дегидратации этилового спирта. По этому способу в США в 1955 г. получено около 15000 т этилена .

Реакция дегидратации этанола может быть выражена уравнением:

В качестве катализатора используется активированная окись алюминия и алюмокремниевые соединения. Процесс осуществляется при 300-400°.

Технологическая схема установки дегидратации приведена ранее.

Этиловый спирт из емкости 1 насосом 2 через теплообменник 3 подает в реакторе 4. Необходимое тепло подводится через стенку реактора даутермом или дымовыми газами. Продукты реакции, состоящие из этилена, диэтилового эфира, этанола и воды, проходят чрез теплообменник 3 и конденсатор 5, в котором конденсируется вода, этанол и диэтиловый эфир.

В колонне 6 смесь делится на газовую и жидкую фазы; газовая фаза, состоящая в основном из этилена, направляется к потребителю чрез системы осушки и очистки твердыми сорбентами. Жидкость подается в колонну 7 с конденсатором орошения 8, в которой она разделяется на верхний продукт (смесь этанола и диэтилового эфира) и нижний (воду). Верхний продукт подается в реакторе 4, а нижний насосом 9 – в абсорбер 6. При этом достигается практически полное превращение этанола в этилен.

Экспериментально исследован процесс получения этилена дегидратацией этанола под давлением. В опытную установку этанол подавался насосом под давлением 33 атм через реактор, заполненный активированной окисью алюминия. Повышенное давление обусловлено необходимостью увеличения температуры до 425°. Выход этилена достигал 95% при чистоте полученного продукта 99%.

2.4 Получение этилена из нефтезаводских газов

Газы термического и каталического крекинга нефтей содержат 2 – 2,5 % этилена. Количество этилена, получающегося при термическом крекинге, не превышает 0,15% вс. на переработанное сырье и при каталитическом крекинге - 0,45%. Поэтому обычно газоразделительная установка этиленового производства работает на сырье, представляющем смесь крекинг-газа и газов пиролиза некоторых компонентов этого же крекинг-газа (этана, пропана, пропилена, а иногда и бутана). Схема получения этилена из таких газов приведена далее на блок-схеме, б. Нефтезаводские газы проходят систему очистки и направляются на компрессию и предварительную осушку. Перед компрессией к этому потоку присоединяют газы пиролиза, содержащие до 30-35% объемн. Этилена. После компрессии, предварительного выделения тяжелых углеводородов и глубокой осушки смесь направляют на газоразделение. Целевым продуктом газоразделения является этилен, иногда пропилен и бутан-бутиленовые смеси, а предельны углеводороды- этан пропан- возвращают на установку пиролиза.

Одним их основных сырьевых источников получения этилена являются природные газы .

Блок-схема процесса получения этилена из природных газов, приведена на схеме-А:

    ЦЕЛЬ РАБОТЫ: изучить способы получения и свойства непредельных углеводородов на примере этилена (этена).

    РАБОЧЕЕ ЗАДАНИЕ:

    получить этилен;

    провести качественные реакции на непредельные углеводороды и реакцию горения этилена;

    получить и выделить из реакционной смеси 1,2-дибромэтан.

    ОБЩИЕ СВЕДЕНИЯ

К непредельным относят углеводороды, содержащие в мо­лекулах кратные связи между атомами углерода. Непредель­ными являютсяалкены, алкины, алкадиены (полиены). Не­предельнымхарактером обладают также циклические угле­водороды, содержащие двойную связь в цикле (циклоалкены), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство «непре­дельности» связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образовани­ем предельных, или насыщенных, углеводородов - алканов.

Алкены (этиленовые углеводороды, олефины) – непредельные углеводороды, в молекулах которых между атомами углерода имеется одна двойная связь. Общая формула алкенов C n H 2 n .

Химические свойства этилена (этена) и его гомологов в основном определяются наличием в их молекулах двойной связи. Для них характерны реакции присоединения, окисления и полимеризации. Большинство реакций протекают по механизму электрофильного присоединения (реакции, протекающие под действием электрофилов – частиц, имеющих недостаток электронной плотности, например незаполненную орбиталь).

1. Гидрирование алкенов . Алкены способны присоединять водород в присутствии катализаторов гидрирования – металлов – платины, палладия, никеля:

бутен бутан

2. Галогенирование (присоединение галогенов) . Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе (ССl 4) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образованию дигалогеноалканов:

этен 1,2-дибромэтан

3. Гидрогалогенирование (присоединение галогеноводорода).

пропен 2-бромпропан

Эта реакция подчиняется правилу Марковникова: при присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген - к менее гидрированному.

4. Гидратация (присоединение воды) . Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных спосо­бов получения этилового спирта:

5. Полимеризация. Особым случаем присоединения явля­ется реакция полимеризации алкенов:

этен полиэлитен

Эта реакция присоединения протекает по свободнорадикальному механизму.

6.Окисление. Как и любые органические соединения, алкены горят в кис­лороде с образованием СО 2 и Н 2 О:

В общем виде:

В отличие от алканов, которые устойчивы к окислению в растворах, алкены легко окисляются под действием водных растворов перманганата калия. В нейтральных или слабоще­лочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы при­соединяются к тем атомам, между которыми до окисления существовала двойная связь.

Этилен и его гомологи легко окисляются, например кислородом перманганата калия; при этом раствор последнего обесцвечивается:

этиленгликоль

Промышленные способы синтеза алкенов основаны на реакциях дегидрирования соответствующих алканов. Так этилен на производстве получают из природного газа и при процессах крекинга и пиролиза нефти.

Лабораторный способ получения этилена – дегидратация этилового спирта под действием серной или фосфорной кислот при нагревании:

    ОБОРУДОВАНИЕ, МАТЕРИАЛЫ, РЕАКТИВЫ:

    1. для опыта №1 - металлический штатив с лапкой, три пробирки, газоотводная трубка с пробкой, горелка (спиртовка), спички; оксид алюминия (Al 2 O 3) или маленький кусочек пемзы, концентрированная серная кислота, этиловый спирт, бромная вода Br 2 (на 50 мл воды 2 капли брома), раствор перманганата калия KMnO 4 (0,005%, подкисленный);

      для опыта №2 - прибор для получения этилена, лаборатор­ный штатив, спиртовка (горелка), делительная воронка, шта­тив с пробирками, стакан с подсоленной холодной водой, про­мытый и прокаленный речной песок, вата, спички; этанол, серная кислота (ρ = 1,84 г/см 3), насы­щенный раствор брома в этаноле С 2 Н 5 ОН, бромид калия крис­таллический, раствор щелочи (10%-ный).

    ХОД РАБОТЫ

Опыт №1. Получение и свойства этилена (этена)

В пробирку (рис. 6) поместите 2 мл концентрированной серной кислоты, 1 мл этилового спирта (лучше, если исполь­зуется смесь, приготовленная учителем заранее) и несколько крупинок оксида алюминия (А1 2 О 3) или маленький кусочек пемзы для равномерного кипения смеси при нагревании, чтобы избежать толчков жидкости при кипении.

За­кройте пробирку пробкой с газоотводной трубкой и нагрейте пробирку в пламени горелки. Выделяющийся газ пропустите в отдельные пробирки с бромной водой и раствором перманганата калия. Убедитесь в том, что бромная вода и раствор перман­ганата калия быстро обесцвечи­ваются. Продолжая нагревать пробирку, поверните газоотводную трубку концом вверх и подожгите газ у конца газоотводной трубки. Отметьте цвет пламени. (Этен горит светя­щимся пламенем.)

Рис. 6. Получение этена

Опыт №2. Получение и выделение дибромэтана из реакционной смеси

Соберите прибор для получения этилена (рис. 7). Приготовьте реакционную смесь: к 1,5 мл этанола при­лейте 4 мл серной кислоты и в полученную смесь присыпьте немного песка (для чего?).

Рис. 7. Прибор для получения этилена и 1,2-дибромэтана

Примечание. Для экономии времени смесь этанола с сер­ной кислотой можно приготовить до начала работы.

В предыдущем опыте при обесцвечивании этиленом бромной воды продуктом реакции был 1,2-дибромэтан, но из-за малой концентрации брома в воде его получи­лось очень мало, для получения его в большем количестве необходимо использовать раствор брома в этаноле, в котором он растворяется значительно лучше, чем в воде.

Прилейте в сухую пробирку около 2 мл спиртового раство­ра брома. Добавьте в этот раствор несколько кристаллов бро­мида или хлорида калия, выполняющих роль катализатора.

Получите этилен и пропустите его через спиртовой рас­твор брома до полного обесцвечивания последнего.

Примечание. Непрореагировавшие пары брома нейтра­лизуют 10%-ным раствором щелочи.

По окончании реакции в растворе брома в пробирке об­разуется 1,2-дибромэтан, который становится хорошо види­мым, если его спиртовой раствор перелить в пробирку, на 2/3 наполненную подсоленной холодной водой. Продукт реакции оседает на дне в виде маслянистых капель. (Плотность 1,2-дибромэтана 2,18 г/см 3 , температура кипения 131 °С.)

Выделите полученный 1,2-дибромэтан при помощи дели­тельной воронки и сдайте его учителю или лаборанту.

Опыты проводить под тягой! Необходимо соблюдать осторожность при работе с бромной водой, т.к. это вещество относится к ядовитым и раздражающим веществам. Необходимо помнить, что получаемый этен (этилен) является чрезвычайно легко воспламеняющимся веществом. Соблюдать осторожность при работе с концентрированной серной кислотой.

    КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Чем отличаются реакции горения этена и этана?

2. Приведите примеры реакций, с помощью которых можно различить предельные и непредельные углеводороды.

2. Как получают этен в лабо­ратории и промышленности? На­пишите уравнения реакции.

3. Почему этен обесцвечивает растворы бромной воды и перманганата калия? Напишите уравнения соответствующих реакций.

4. Расшифруйте следующую цепочку превращений. Назовите соединения А, Б, В:

5. Решите задачу: смесь этана и этена объемом 5,6 л (н.у.) обесцвечивает раствор бромной воды массой 1000 г с массовой долей брома 3,2%. Определите массовую долю (в процентах) этена в исходной смеси. Ответ: 79%.

    СОСТАВЛЕНИЕ ОТЧЕТА

    1. Цель работы, рабочее задание

      Материалы, оборудование, реактивы

      Химические реакции, подтверждающие опыты

    2. Ответы на контрольные вопросы

В среде овощеводов, которые занимаются выращиванием и поставками сельскохозяйственных культур профессионально, принято собирать плоды, не прошедшие стадию дозревания. Такой подход позволяет дольше сохранять овощи и фрукты и без проблем перевозить их на большие расстояния. Поскольку зеленые бананы или, например, помидоры вряд ли будут пользоваться серьезным спросом у рядового потребителя, а естественное дозревание может занять продолжительное время, для ускорения процесса применяются газы этилен и ацетилен . На первый взгляд такой подход может вызвать недоумение, но вникнув в физиологию процесса становится понятно, почему современные овощеводы активно пользуются подобной технологией.

Газовый гормон созревания для овощей и фруктов

Влияние специфических газов на скорость созревания культур первым заметил российский ботаник Дмитрий Нелюбов, который в начале 20 в. определил некую зависимость «спелости» лимонов от атмосферы в помещении. Оказалось, что в складах со старой системой отопления, которая не отличалась высокой герметичностью и пропускала в атмосферу пар, лимоны созревали гораздо быстрее. Путем несложного анализа было выяснено, что такой эффект достигался благодаря этилену и ацетилену, которые находились в составе исходящего из труб пара.

Поначалу подобное открытие было лишено должного внимания со стороны предпринимателей, только редкие новаторы пытались насытить свои хранилища газом этиленом для улучшения производительности. Лишь в середине 20 в. «газовый гормон» для овощей и фруктов был взят на вооружение достаточно крупными предприятиями.

Для реализации технологии обычно применяются баллоны, вентильная система которых позволяет достаточно точно настроить выход газа и добиться необходимой концентрации в помещении. Очень важно, что при этом из хранилища вытесняется обычный воздух, который содержит кислород - главный окислитель для сельскохозяйственных продуктов. Кстати, технология замещения кислорода другим веществом активно применяется для увеличения срока хранения не только плодов, но и других пищевых продуктов - мяса, рыбы, сыров и т.п. Для этой цели применяется азот и углекислота, о чем подробно .

Почему газ этилен называют «банановым» газом

Итак, этиленовая среда позволяет ускорить процесс дозревания овощей и фруктов. Но почему это происходит? Дело в том что в процессе созревания многие культуры выделяют специальное вещество, коим как раз является этилен, который, попадая в окружающую среду, влияет не только на сам источник выделения, но и на его соседей.

так яблоки помогают при дозревании

Каждый вид плода выделяет разное количество гормона созревания. Больше всего в этом плане отличаются:

  • яблоки;
  • груши;
  • абрикосы;
  • бананы.

Последние попадают в нашу страну, преодолевая значительное расстояние, поэтому их не транспортируют в спелом виде. Чтобы кожура банана приобрела свой естественный ярко-желтый окрас, многие предприниматели помещают их в специальную камеру, которая наполняется этиленом. Цикл такой обработки в среднем составляет 24 часа, после чего бананы получают своеобразный толчок к ускоренному созреванию. Интересно, что без подобной процедуры, любимый фрукт многих детей и взрослых будет очень долго находиться в полузрелом состоянии. Поэтому «банановый» газ в этом случае просто необходим.

отправляют на дозревание

Способы создания необходимой концентрации газа в камере хранения плодов

Выше уже отмечалось, что для обеспечения необходимой концентрации этилена/ацетилена в помещении для хранения овощей и фруктов обычно применяются газовые баллоны. В целях экономии некоторые овощеводы иногда прибегают к другому методу. В помещении с плодами кладется кусок карбида кальция, на который капает вода с периодичностью 2-3 капли/час. В результате химической реакции выделяется ацетилен, постепенно наполняя внутреннюю атмосферу.

Подобный «дедовский» способ, хоть и привлекает своей простотой, больше характерен для частных домохозяйств, поскольку не позволяет добиться точной концентрации газа в помещении. Поэтому на средних и крупных предприятиях, где важно для каждой культуры рассчитать необходимое количество «газового гормона», зачастую применяются баллонные установки.

Правильное формирование газовой среды при хранении и производстве пищевых продуктов играет огромную роль, позволяя улучшить внешний вид товара, его вкусовые качества и повысить срок годности. Больше о способах упаковки и хранении продуктов читайте в цикле статей о пищевых газовых смесях, а заказать эту продукцию можно , выбрав необходимый газ и при желании получив консультацию о его правильной эксплуатации.

Последние материалы сайта